RAS Earth ScienceОкеанология Oceanology

  • ISSN (Print) 0030-1574
  • ISSN (Online) 3034-5979

DIAPYCNAL EXCHANGE IN THE MAIN PYCNOCLINE OF THE BLACK SEA

PII
S30345979S0030157425040043-1
DOI
10.7868/S3034597925040043
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 4
Pages
581-588
Abstract
The article discusses the application of 03 parameterization for calculating the vertical turbulent diffusion coefficient from vertical profiles of water density and current velocity. The work is based on the processing of data obtained during the 95th cruise of the R/V Professor Vodyanitsky with a depth resolution of about 10 meters in the central sector of the northern Black Sea from June 16 to July 4, 2017. Measurements of salinity and water temperature profiles were carried out using the SBE911plus probe, and current velocity – using the LADCP lowered acoustic Doppler current profiler. Transfer functions of the process of parameter measurement, calculation of vertical derivatives at finite increments and data processing were taken into account when integrating the canonical spectrum of internal waves. The results of calculating the vertical turbulent diffusion coefficient in the main pycnocline on the isopycnal surface with a conditional density of 15 kg/m, which was characterized by a maximum buoyancy frequency, are considered in detail. Intensification of diapycnal mixing was observed in the area of the Rim Current. The value of the vertical turbulent diffusion coefficient at the maximum was 1.3 · 10 m/s, in the center and on the periphery of the sea – 0.4 · 10 m/s and 0.65 · 10 m/s, respectively. Estimates of heat, salt and oxygen fluxes were also the highest in the area of the Rim Current. Fluxes in the center and on the periphery of the sea are 1.5–3 times less than their values at the maximum.
Keywords
Черное море вертикальное турбулентное перемешивание основной пикноклин диапикнический обмен сдвиг скорости течения Основное черноморское течение
Date of publication
18.12.2024
Year of publication
2024
Number of purchasers
0
Views
20

References

  1. 1. Журбас В.М., Зацепин А.Г., Григорьева Ю.В. и др. Циркуляция вод и характеристики разномасштабных течений в верхнем слое Черного моря по дрифтерным данным // Океанология. 2004. Т. 44. № 1. С. 34–48.
  2. 2. Зацепин А.Г., Голенко Н.Н., Корж А.О. и др. Влияние динамики течений на гидрофизическую структуру вод и вертикальный обмен в деятельности слое Черного моря // Океанология. 2007. Т. 47. № 3. С. 327–339.
  3. 3. Зацепин А.Г., Островский А.Г., Кременецкий В.В. и др. Подспутниковый полигон для изучения гидрофизических процессов в шельфово-склоновой зоне Черного моря // Известия РАН. Физика атмосферы и океана. 2014. № 1. С. 16–29.
  4. 4. Морозов А.Н., Зацепин А.Г., Куклев С.Б. и др. Вертикальная структура в верхней части континентального склона Черного моря в районе Геленджика // Известия РАН. Физика атмосферы и океана. 2017. Т. 53. № 6. С. 718–727. https://doi.org/10.7868/S000335151706006X
  5. 5. Морозов А.Н., Лемешко Е.М. Оценка вертикальной турбулентной диффузии по данным CTD/LADCP-измерений в северо-западной части Черного моря в мае 2004 года // Морской гидрофизический журнал. 2014. № 1. С. 58–67.
  6. 6. Морозов А.Н., Маньковская Е.В. Холодный промежуточный слой Черного моря по данным экспедиционных исследований 2016–2019 годов // Экологическая безопасность прибрежной и шельфовой зон моря. 2020. № 2. С. 5–16. https://doi.org/10.22449/2413-5577-2020-2-5-16
  7. 7. Морозов А.Н., Маньковская Е.В. Пространственные характеристики холодного промежуточного слоя Черного моря летом 2017 года // Морской гидрофизический журнал. 2021. Т. 37. № 4. С. 436–446. https://doi.org/10.22449/0233-7584-2021-4-436-446
  8. 8. Морозов А.Н., Маньковская Е.В. Вертикальное перемешивание в деятельности слое Черного моря по данным мелкомасштабных измерений // Экологическая безопасность прибрежной и шельфовой зон моря. 2022. № 4. С. 25–38. https://doi.org/10.22449/2413-5577-2022-4-25-38
  9. 9. Морозов А.Н., Маньковская Е.В., Федоров С.В. Инерционные колебания в северной части Черного моря по данным натурных наблюдений // Фундаментальная и прикладная гидрофизика. 2021. Т. 14. № 1. С. 43–53. https://doi.org/10.7868/S2073667321010044
  10. 10. Подымов О.И., Зацепин А.Г., Островский А.Г. Вертикальный обмен в черноморском пикноклине и его связь с динамикой вод // Океанология. 2017. Т. 57. № 4. С. 546–559.
  11. 11. Baumann T.M., Fer I., Schulz K., Mohrholz V. Validation finescale parameterizations for the Eastern Arctic Ocean internal wave field // Journal of Geophysical Research: Oceans. 2023. V. 128. e20221C018668. https://doi.org/10.1029/20221C018668
  12. 12. Chinn B.S., Alford M.H. The Impact of observed variations in the shear-to-strain ratio of internal waves on inferred turbulent diffusivities // Journal of Physical Oceanography. 2016. V. 46. P. 3299–3320.
  13. 13. Fer I. Scaling turbulent dissipation in Arctic fjord // Deep-Sea Research. Part II. 2006. V. 53. P. 77–95.
  14. 14. Ferron B., Kokoszka F., Mercier H., Lherminier P. Dissipation rate estimates from microstructure and finescale internal wave observations along the A25 Greenland–Portugal OVIDE Line // Journal of Atmospheric and Oceanic Technology. 2014. V. 1. № 31. P. 2530–2543.
  15. 15. Fine E.C., Alford M.H., MacKinnon J.A., Mickett J.B. Microstructure mixing observations and finescale parameterizations in the Beaufort Sea // Journal of Physical Oceanography. 2021. V. 51. P. 19–35. https://doi.org/10.1175/JPO-D-19-0233.1
  16. 16. Gregg M.C. Scaling turbulent dissipation in the thermocline // Journal of Geophysical Research: Oceans. 1989. V. 94. Issue C7. P. 9686–9698. https://doi.org/10.1029/JC094IC07p09686
  17. 17. Gregg M.C., Sanford T.B., Winkel D.P. Reduced mixing from the breaking of internal waves in equatorial waters // Nature. 2003. V. 402. P. 513–515.
  18. 18. Gregg M.C., Yakushev E. Surface ventilation of the Black Sea’s cold intermediate layer in the middle of the western gyre // Geophysical Research Letters. 2005. V. 32. L03604. https://doi.org/10.1029/2004GL021580
  19. 19. Henyey F.S., Wright J., Flatte S.M. Energy and action flow through the internal wave field: an eikonal approach // Journal of Geophysical Research: Oceans. 1986. V. 91. P. 8487–8495.
  20. 20. Kunze E., Firing E., Hummon J.M. et al. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles // Journal of Physical Oceanography. 2006. V. 36. P. 1553–1576.
  21. 21. Munk WH. Abyssal recipes // Deep-Sea Research. 1966. V. 13. P. 707–730. https://doi.org/10.1016/0011-7471 (66)90602-4
  22. 22. Munk W., Wunsh C. Abyssal recipes II: Energetics of tidal and wind mixing // Deep-Sea Research. 1998. Part I. V. 45. P. 1977–2010. https://doi.org/10.1016/S0967-0637 (98)00070-3
  23. 23. Podymov O.I., Zatsepin A.G., Ostrovskii A.G. Fine structure of vertical density distribution in the Black Sea and its relation with vertical turbulent exchange // Journal of Marine Science and Engineering. 2023. V. 11. 170. https://doi.org/10.3390/jmse110100170
  24. 24. Polzin K. Statistic of the Richardson number: mixing models and finestructure // Journal of Physical Oceanography. 1996. V. 26. P. 1409–1425.
  25. 25. Polzin K.L., Garabato A.C.N., Huussen T.N. et al. Fine-scale parameterizations of turbulent dissipation // Journal of Geophysical Research: Oceans. 2014. V. 119. P. 1383–1419. https://doi.org/10.1002/2013JC008979
  26. 26. Polzin K.L., Toole J.M., Smith R.W. Finescale parameterizations of turbulent dissipation // Journal of Physical Oceanography. 1995. V. 25. P. 306–328.
  27. 27. Sasaki Y., Yasuda I., Katsumata K. et al. Turbulence across the Antarctic Circumpolar Current in the Indian Southern Ocean: Micro-temperature measurements and finescale parameterizations // Journal of Geophysical Research: Oceans. 2024. V. 129. e2023JC019847. https://doi.org/10.1029/2023JC019847
  28. 28. Takahashi A., Hibiya T. Assessment of finescale parameterizations of deep ocean mixing in the presence of geostrophic current shear: results of microstructure measurements in the Antarctic Circumpolar Current region // Journal of Geophysical Research: Oceans. 2019. V. 124. P. 135–153. https://doi.org/10.1029/2018JC014030
  29. 29. Wijesekera H., Padman L., Dillon T. et al. The application of internal-wave models to a region of strong mixing // Journal of Physical Oceanography. 1993. V. 23. P. 269–286.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library